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Abstract

Extensional fault systems are commonly described using models that assume layer-oblique heterogeneous simple shear
deformation in fault blocks. These models are colloquially known as vertical or inclined shear models. Less commonly, layer-
parallel heterogeneous simple shear is employed; these models are called constant-thickness/¯exural-slip models, and have the

geometric property that they conserve both bed length and bed thickness. Although popular, vertical or inclined shear models
su�er from the limitation that they do not explain two widely observed features of extensional fault systems: crestal collapse
grabens, and downwardly blind faults within the hanging wall. Currently used constant-thickness/¯exural-slip models are

severely limited by their inability to `forward-model' faults with dips (angular bends) greater than 308. We have modi®ed the
most widely used constant-thickness/¯exural-slip model so that it can be applied to faults with dips or angular bends greater
than 308. The resulting model can be used to describe the constant-thickness geometry of hanging walls developed above normal

faults of any shape. Alternatively, the model can be used to predict the amount and location of departures from constant-
thickness (and constant bed length) deformation in a fault hanging wall, manifest at large-scale by crestal collapse grabens and
downwardly blind faults, or at small-scale by sub-seismic-resolution faulting. # 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Normal faults that dip steeply near the surface and
less steeply with depth are termed listric. The most
common methods for modelling the deformation above
listric normal faults rely on heterogeneous simple
shear along either vertical or steeply inclined directions
within the hanging wall (Verrall, 1981; Groshong,
1989; Rowan and Klig®eld, 1989; Dula, 1990).
Although these vertical and inclined shear models are
widely used and are generally considered to be suc-
cessful in regions such as the Gulf of Mexico (Rowan
and Klig®eld, 1989; Xiao and Suppe, 1992), they su�er
from the limitation that they do not predict commonly
observed large-scale features such as crestal collapse
grabens and downwardly blind hanging wall faults.

Classical fault-bend fold theory as codi®ed by Suppe
(1983) and widely applied since makes three important
assumptions: (1) bedding-normal thickness is preserved
during deformation; (2) bed length is preserved during

deformation; and (3) there is no net distortion where
layers are unbent (no general shear). Constant bed
length and thickness are the basic tenets of ¯exural
slip deformation, in which only bent beds have experi-
enced layer-parallel slip, and area is conserved in dis-
placement-parallel cross-sections. Assumption (3)
required that there be no `general shear' in the hanging
wall fault-bend fold, although Suppe (1983) considers
two cases of general shear, one special case for the
shearing out of ¯at-topped folds, and the other more
general case of arbitrary hanging wall shear. The no-
general-shear constraint limits the strict applicability of
Suppe's equations to ramp angles of less than 308.
Consequently, Suppe's (1983) paper and most sub-
sequent treatments have concentrated on contractional
deformation for which the restriction to ramp angles
of 308 or less is not a serious limitation because thrust
fault ramps commonly dip at such low angles. The
principal weakness in the application of ¯exural slip
fault-bend folding to extensional terrains is that nor-
mal faults usually dip at angles 60±708 close to the
earth's surface, although fault dip may decrease with
depth. Many geologists would prefer to use constant-
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thickness deformation to model the hanging walls of
listric normal faults to avoid the limitations of vertical
and inclined shear models; however, the ramp angle
restriction has precluded the wide use of constant-
thickness fault-bend fold theory in extensional terrains.

It is possible to construct normal-fault trajectories
from near-surface data that meet the three assump-
tions listed earlier using a modi®cation of the method
devised by Geiser et al. (1988) for contractional fault-
bend folds that have ramps steeper than 308. Their
method involves the restoration of part of the hanging
wall onto a known segment of the fault (assumed to
have undergone no shape change) and the subsequent
reconstruction of this segment in the deformed state
using the geometry of a known hanging wall horizon.
Several iterations of this procedure will usually pro-
duce a listric fault geometry. However, this approach
is limited in its use because fault trajectories obtained
by this method cannot be forward modelled (i.e. they
represent a unique instant in the evolution of the fault
for which the assumptions hold). Prior to (less dis-
placement) and following (more displacement) that
instant, general hanging wall shear is required for the
hanging wall to maintain contact with the fault sur-
face.

In this study, we relax the no-general-shear con-
straint to allow application of constant-thickness fault-
bend fold theory to ramp dips greater than 308, and to
permit the construction of hanging wall geometries
above both listric and anti-listric (downward steepen-
ing) normal faults that can be fully forward modelled.
Permitting general shear results in multiple solutions
for the hanging wall geometry above a curved normal
fault. However, incorporation of geological data (con-
straints on hanging wall deformation) or assumptions
of internal deformation (e.g. minimum deformation in
the hanging wall) can yield a best-®t solution within a
narrow range of possibilities. This approach can
account for the formation of large-scale deformation
features commonly found in the hanging walls of nor-
mal faults, such as crestal collapse grabens, and down-
wardly blind faults.

2. Geological reasonableness

There are two geometrical components to ¯exural
slip deformation of a hanging wall above a curved
fault: bending of layers and layer-parallel shear.
Extending constant-thickness fault-bend folding to
ramp angles or fault bends greater than 308 (see
Appendix A) requires relaxation of the `no general
shear' constraint. Because layer bending and layer-par-
allel shear can vary once this constraint is relaxed,
there is no unique solution for a given fault shape and
displacement (Suppe, 1983). It is necessary to choose a

set of shear conditions in order to obtain a hanging
wall geometry (or specify a hanging wall geometry in
order to obtain a set of shear conditions) and this
choice is mathematically arbitrary. However, because
both bending and shearing of layers require energy,
and because the functions describing layer bending
and shearing are non-linear, it is possible to de®ne a
unique minimum energy (minimum deformation) sol-
ution among the large range of potential solutions.
Little is known about the energy budget of layer bend-
ing and shear, and the details vary from layer to layer
within a single lithologic sequence. However, a best-®t
solution can be obtained for a given fault shape and
displacement by minimizing ®rst shear and then bend-
ing. The `best-®t' solution obtained by our method can
be tuned within a narrow range by specifying the roll-
over dip and predicting layer-parallel shear, or by spe-
cifying layer-parallel shear and predicting rollover dip.
This provides the geologist with a quantitative means
of testing sensitivity to input parameters and assessing
the resulting hanging wall deformation.

3. Listric normal faults

Eq. (1 describes the relationship between initial cut-
o� angle (y1), ®nal resting angle (y2), bed dip (a), and
layer-parallel shear (C) for listric faults (see Appendix
A for derivation and Fig. 1 for de®nition of angles):

tan�C� � ÿ cot�y1� � 2 tan
a
2

� �
� cot�a� y2�: �1�

Fig. 1. Angular elements of listric normal fault and hanging wall

used to derive Eq. (1.
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Because in the general use of this model neither C nor
a will be known, Eq. (1 can be graphed. For a pair of
y1 and y2 values, a value of C is chosen in the range:
ÿ908< C<908 (negative shear is top away from the
fault, positive shear is top towards the fault, during de-
formation), then a is incrementally varied through the
range: 08< a<908 (overturned beds are not con-
sidered). The value of a at which the di�erence
between the right and left sides of the equation is mini-
mized is found and plotted. This yields four types of C
vs a curve (Fig. 2). The minimum deformation solution
minimizes both shear (C) and bending (a). Because

negative shear is just as energy consuming as positive
shear (negative and positive designation is arbitrary)
the preferred natural solution for a y1, y2 pair will be
represented by the nearest approach to zero shear.
Curves drawn by solving Eq. (1 are illustrated in
Fig. 3.

3.1. Curve types 1 and 2

Curves exhibiting a single minimum turning point
with respect to C in the range 08< C<908 are here
de®ned as Type 1 if they have no maximum turning

Fig. 2. Examples of the four curve types from solutions to Eq. (1. (a) Type 1: Single minimum, only positive shear in the range of

ÿ908< C<908. (b) Type 2: Double minimum, one at C=0, the other at some higher C value, but lower a value. (c) Type 3: Single minimum,

both positive and negative shear in the range of ÿ908< C<908. (d) Type 4: Double minimum, both minima are at C=0.
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Fig. 3. Reference graph of forelimb dip (a) vs layer-parallel shear (C) for initial cuto� angles (y1) from 108 to 808 in 108 increments, and for ®nal

resting angles (y2) from 08 to 908 in 108 increments. Eq. (1 is solved to draw the listric solutions, and Eq. (2 is solved to draw the anti-listric sol-

utions.
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point in this range and Type 2 if they do have a maxi-

mum turning point (Fig. 2a and b). The rollover dip

that corresponds to this minimum turning point is

given by (see Appendix A):

aCmin � 60ÿ 2y2
3

� �
: �1a�

This solution yields minimum deformation solutions

where:

cot�y1� < 3 tan 30ÿ y2
3

� �� �
: �1b�

Type 2 curves occur where initial cuto� angles (y1) are
high, and displacements are small (Fig. 2b). They also

yield a zero shear solution (C=0), but one that corre-

sponds to a high rollover dip. Continued displacement

along such faults causes the C vs a curve to evolve

rapidly to a type 1 (Fig. 4). Therefore the preferred

minimum deformation solution corresponds to the

lower of the two limb dips (138 with a C value of 108,

as opposed to 728 and a C value of 08, in the example
given in Figs. 2b and 4), which gives a smooth trend
for the locus of minimum shear with increasing fault
displacement. This is a function of minimizing the
combined e�ects of shear and bending. The energy
required to bend through 138 with a layer-parallel
angular shear of 108 is less than the energy required to
bend through 728 albeit with zero layer-parallel shear.

3.2. Curve types 3 and 4

Curves that exhibit a single minimum turning point
with respect to C in the range ÿ908< C<08 are here
de®ned as Type 3 if they intersect the a-axis once and
Type 4 if they intersect the a-axis twice (Fig. 2c and
d). Type 3 and 4 curves represent the condition:

cot�y1�r3 tan 30ÿ y2
3

� �� �
; �1c�

and yield true zero shear solutions. Curves of type 4
have two solutions for which C=0 (Fig. 2d). In order
to minimize both shear and bending, the shear mini-
mum that corresponds to the lower of the two limb
dips is the preferred minimum deformation solution.
Solutions to Eq. (1 for y1=108 to 808 and y2=08 to
908 in 108 increments are given in the right side of the
graphs in Fig. 3.

Interestingly, Fig. 3 illustrates that the a value of the
minimum turning point of Eq. (1 depends only on the
®nal resting angle (y2), and is independent of cuto�
angle (y1). This is not true of the C value, which

Fig. 4. Graphs of a (forelimb dip) against C (layer-parallel shear) for

eight sets of solutions to Eq. (1 for an initial cuto� angle of 808.
Curves for ®nal resting angles of 708 through 08 (representing

increased displacement for a listric normal fault) are shown. The

locus of minimum deformation is also plotted, illustrating the conti-

nuity of the minimum deformation solution with the Type 2 curve

minimum at a=138, C=108.

Fig. 5. Angular elements of antilistric normal fault and hanging wall

used to derive Eq. (2.
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Table 1

Table of minimum deformation a values for the complete range of y1, y2 values
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Table 1Ðcontinued
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depends on y1. The relationship is illustrated in
Fig. 3. The (listric solution) curve for y2=208, for
example, has a minimum at a=478 regardless of y1.
However, the angular shear that corresponds to this
minimum ranges from 488 (y1=808) to ÿ238
(y1=308), and the corresponding angular shear only
represents a minimum deformation solution where
Eq. (1b) holds.

The rules for determining forelimb dip values that
correspond to minimum deformation solutions (amin)
can be summarized thus:

. If the minimum shear value (Cmin)>0, then amin is
the a value that corresponds to Cmin.

. If (Cmin)<0, then amin is the a value that corre-
sponds to C=0.

. If more than one C minima exist, or there is more
than one case where C=0, amin is the least a value
that corresponds to C=0.

4. Anti-listric normal faults

Faults or fault segments that steepen with depth are
termed anti-listric. Eq. (2 describes the relationship
between initial cuto� angle (y1), ®nal resting angle (y2),
bed dip (a), and layer-parallel shear (C) for anti-listric
faults (Fig. 5). Eq. (2 can be graphed in the same way
as Eq. (1. Solutions in the range ÿ908< C<908
(negative shear is top away from the fault, positive
shear is top towards the fault, during deformation),
and 08< a<908 (overturned beds are not considered)
yield only one type of curve (Fig. 3) (see Appendix B
for derivation):

cot�y1� � tan�C� ÿ tan
a
2

� �
�

cot�y1� � tan
a
2

� �
ÿ tan�C�

� �2
�

sin�y2 ÿ a� � cos a
2

� �
cos y2 ÿ a

2

� �
26664

37775: �2�

Curves drawn by solving Eq. (2 numerically for
y1=108 to 808 and y2=08 to 908 in 108 increments
are given in the left side of the graphs in Fig. 3. All
curves have essentially the same form: they are sig-
moidal, exhibiting no turning points with respect to
C, they all yield limb dips synthetic to the dip of
the fault (i.e. a is negative in our convention), and
all intersect the a-axis (i.e. have zero-shear sol-
utions).

5. Applications

The constant-thickness model presented here extends
the range of tools available for the analysis of defor-
mation above curved normal faults. It makes signi®-
cant contributions to two common problems in cross-
section construction and analysis:

1. The case in which the fault trajectory is known or
assumed, but the hanging wall geometry is not
known; this is the so-called `forward-modelling'
scenario.

2. The case in which the fault trajectory is unknown,
but the hanging wall geometry is known; this is the
so-called `fault trajectory prediction' scenario, or
`inverse problem'.

Our model also provides new insight in two cases that
are not addressed by existing models:

3. The case in which both the fault trajectory and the
hanging wall geometry are reasonably well known,
but their geometries cannot be explained with in-
ternal consistency by an existing deformation model.

4. The case in which the hanging wall contains fea-
tures such as crestal collapse grabens and/or down-
wardly tipping normal faults, or is suspected of
containing sub-seismic-resolution faulting.

5.1. Forward-modelling using a minimum deformation
approach

It is often convenient and instructive to forward-
model hanging wall shapes on a pre-drawn fault
shape. We present an algorithm that can be used to
perform this task (Appendix C). The values of fore-
limb dip (a) corresponding to minimum deformation
are tabulated in Table 1 for the complete range of y1
and y2 values, and Fig. 6 shows how they can be
obtained. We treat the hanging wall as a series of in-
itially horizontal segments each of which can be
de®ned in terms of its initial cuto� angle and ®nal rest-
ing angle. Once displacement of a horizon along the
fault has been speci®ed, the hanging wall geometry can
be constructed by obtaining the forelimb dip (from
Table 1) and angular shear values (from Fig. 3) con-
sistent with minimum deformation that apply to each
hanging wall segment as it rests on the fault. As an
example, consider a listric normal fault consisting of
nine straight-line sections dipping at 808, 708, . . . ,08. In
this simple case the vertical separations between fault
nodes are constructed to be equal, therefore the hang-
ing wall can be divided into horizontal segments of
equal thickness (Fig. 7a). The hanging wall is con-
structed as a series of angular-bend folds using the
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appropriate dip domain boundaries. The deformed
shape of the hanging wall can be constructed, together
with its predicted shear pro®le (Fig. 7b). Fold geome-
tries can be made more rounded by increasing the
angular precision with which the initial fault shape is
de®ned (e.g. 58 increments instead of 108).

5.2. Fault-trajectory prediction using a minimum
deformation approach

Using the principle outlined by Geiser et al. (1988) it
is possible to construct a fault trajectory from a knowl-
edge of the shape of a hanging wall horizon and the
fault trajectory between the footwall and hanging wall
cuto�s of this horizon (Fig. 8a). The algorithm pre-
sented in Appendix C can be inverted to determine a
minimum deformation fault trajectory consistent with
the hanging wall geometry. This is possible because the
known portion of the fault trajectory constrains the cut-
o� angle of the hanging wall, and the hanging wall itself
provides the forelimb dip angle of the hanging wall seg-
ments which can be used to determine the ®nal resting

angle (Fig. 8a). The fault trajectory can be sequentially
constructed downwards from the lowest known point
on the fault (the hanging wall cuto�) by obtaining fault
dips that are consistent with the minimum deformation
solution represented by the cuto� and ®nal resting
angles of each successively deeper hanging wall segment
(Fig. 8c and e). There is some imprecision in this method
when obtaining y2 values from Table 1 because a single
forelimb dip (calculated to a precision of 18) may arise
from two ®nal resting angles derived from a single cuto�
angle; use of a computer to perform the task can reduce
this imprecision.

5.3. Strain analysis of cross-sections using non-minimum
deformation approach

If su�cient information is available to be con®dent
of both the fault trajectory and the hanging wall fold
geometry, and these two are not internally consistent
using existing deformation models (vertical or inclined
shear, constant-thickness, etc.), our model provides a
further alternative for analysis (Appendix D). The

Fig. 6. Minimum deformation solutions. Chart showing the y1, y2 domains for which minimum deformation solutions can be obtained.
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hanging wall can be divided into segments de®ned by
the initial cuto� angles and ®nal resting angles. Then
using the cuto� angle, ®nal resting angle pair, and
Fig. 3, the angular shear for each hanging wall seg-
ment can be determined. For example, a hanging wall
segment cut from a fault section dipping at 608
(y1=608) and resting on a fault section dipping at 208
(y2=208) with a forelimb dip angle (a) of 108 does
not represent a minimum-deformation solution (fore-
limb dip angle would be 478) but should exhibit angu-
lar shear (C) of 548. Once the shear angles for all
segments have been determined, the shear pro®le for
the hanging wall can be constructed.

5.4. Layer thinning and extension using non-minimum
deformation approach

The shear pro®le described above and in Appendix
D may represent the true state of strain of the sheared
layers high in the hanging wall. Alternatively, if the
shear strain has not developed in the hanging wall,

layers high in the hanging wall must have thinned and/
or extended in order to accommodate the required
hanging wall strain (Ferrill and Morris, 1997). The
model provides a means for quantifying this extension,
and therefore predicting the amount of extension
accommodated at large-scale by crestal collapse gra-
bens and downwardly blind faults, or at small-scale by
more pervasive means such as sub-seismic-resolution
faulting.

6. Alternative hanging wall deformation mechanisms

6.1. Signi®cance for section restoration and validation

Cross-sections constructed for listric normal faults
with near-surface dips of 808, using Eq. (1 and mini-
mizing shear and bending exhibit two salient features.
Beds low in the hanging wall, cut from ramps dipping
at 308 or less, can accommodate bending without
accompanying general shear or thickness change

Fig. 7. An example of a forward-modelled listric normal fault (see text). (a) Undeformed hanging wall. (b) Deformed hanging wall constructed

using the principle of minimum deformation.

Fig. 8. Fault trajectory prediction from hanging wall geometry using minimum deformation approach. (a) Deformed state: the fault trajectory

from footwall cuto� to hanging wall cuto� is known, as is the shape of the top of horizon 1 in the hanging wall. Because segment 1 can be

restored as shown in (b), the cuto� angle (y1) for segment 1 is 708, and the forelimb dip is 208. (b) Restored state of (a). (c) Deformed state:

knowing that the cuto� angle of segment 1 is 708 and that it now has a dip of 208, using Fig. 6 and Table 1 we see that this corresponds to a

®nal resting angle (y2) of 608. Therefore the fault trajectory in the deformed state can be continued downward at a dip of 608. (d) Restored state

of (c). (e) Deformed state: knowing that the cuto� angle of segment 2 is 608 and that it now has a dip of 208, using Fig. 6 and Table 1 we see

that this corresponds to a ®nal resting angle (y2) of between 578 and 588. Because the dip value for a ®nal resting angle of 578 (228) is much clo-

ser than that for 588 (118) the fault trajectory in the deformed state can be continued downward at a dip of 578. (f) Restored state of (e).
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(Fig. 9). Beds high in the hanging wall, cut from
ramps dipping at higher angles, must undergo either
bed-parallel shear or bed-parallel extension in order to
maintain constant-thickness (Fig. 9). The method(s) by
which the hanging wall accommodates strain in its
higher portion is of great interest and our model pro-
vides a quantitative means for assessing how that
strain is partitioned. Possible mechanisms for hanging
wall strain accommodation are: large-scale crestal-col-
lapse grabens and downwardly blind faults (both syn-
thetic and antithetic), and small-scale extensional
faults, fractures, and distributed ductile deformation
(Ferrill and Morris, 1997). None of the inclined or ver-
tical shear models commonly used to construct and re-
store extensional fault geometries (Dula, 1990) can
explain the common occurrence of large-scale features
such as crestal collapse grabens or downwardly blind
faults in the hanging walls of listric normal faults.

6.2. Faulting and fracturing

Outer-arc extension in the hanging wall of a listric
normal fault is predicted in the model by the shear
pro®le. As quanti®ed here, faulting and fracturing in
the hanging wall to accommodate this extension is
likely to die out with depth because the necessity for
extension decreases with depth. This observation is
consistent with the common occurrence of deformation
patterns in extensional rollover structures such as cres-
tal grabens and downwardly tipping faults that indi-

cate a downward decrease in layer-parallel extension.
In addition, by matching the bending of hanging wall
beds with the extension that should be associated with
that bending, and then comparing this with the actual
extension generated by hanging wall faulting, it should
be possible to predict how much, if any, extension has
been partitioned into the apparently unfaulted rock
mass in the form of smaller-scale extensional faults
and fractures. This is of particular interest in areas of
petroleum exploration where extension produced by
features resolvable on seismic sections could be com-
pared with predicted extension and an estimate of
smaller scale features could be made based on the mis-
match.

6.3. Penetrative shear

In regions where temperatures and/or pressure con-
ditions are high during faulting, or where sequences
contain weak layers, hanging wall rocks may deform
by more ductile mechanisms and penetrative layer-par-
allel shear may accommodate hanging wall strain.
Accumulation of ductile strain in the hanging wall of a
brittle fault can occur. Displacement along the fault
results in high strain rates within the fault zone, thus
promoting brittle behavior even at elevated tempera-
tures and pressures (Ferrill et al., 1998), whereas
strains distributed through the hanging wall for a
given slip increment accummulate at much slower rates
and therefore may be accomplished by more ductile

Fig. 9. An example of a sequentially forward-modelled listric normal fault (see text).
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mechanisms (e.g. crystal-plastic deformation, grain
boundary sliding).

7. Summary

The constant-thickness deformation model implies
¯exural shear deformation within fault blocks, but can
also be used to predict fault block deformation by
other mechanisms. Flexural slip is likely an important
deformation mechanism wherever strong mechanical
contrasts exist between rock layers. Such contrasts
exist in sedimentary sequences where sand and over-
pressured shale or evaporites occur, and even in volca-
nic rocks where bedded tu�s are inter-layered with
welded cooling units. Our approach provides a means
for describing these structures that explains such com-
mon large-scale features as crestal collapse grabens
and downwardly blind faults, and can predict the like-
lihood and degree of development of small-scale exten-
sional features in the hanging walls of curved faults.
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Appendix A

A.0.1. Fault-bend fold theory extended: listric faults

Fig. 1(a) illustrates an undeformed, horizontal bed
resting against a segmented listric fault surface;
Fig. 1(b) illustrates the same bed after fault slip such
that the whole of the bed has slipped past the fault
bend.

De®ne lengths, assuming conservation of bed length:

BE � CD � t;

AB � t

tan�y1� ;

AC � l0;

A0F � A0I � la:

Line E 0F must bisect angle A 0FG as a consequence of

the requirement of constant bed thickness (e.g. Suppe,

1985, p. 63, ®gs. 2±24), and de®ning angles in all the

triangles within this angular bend fold gives the equal-

ity: A 0FI=A 0IF.

FG � lb;

GC 0 � lc;

D0H � t � tan�C�:

Conservation of bed length requires that:

l0 � la � lb � lc;

and that:

l0 ÿ t

tan�y1� � lc � t � tan�C�;

therefore:

lc � l0 ÿ t

tan�y1� ÿ t � tan�C�:

De®ne angles

A0FG � 180ÿ a;

A0FI � A0IF � 180ÿ a
2
� 90ÿ a

2

� �
;

FE0G � a
2
;

IE0A0 � 90ÿ a
2
ÿ y2;

FA0I � a:

From triangle A 0FE 0 the sine rule gives:

la

sin 90ÿ a
2
ÿ y2

� � � FE0

sin a� y2� � :

From triangle FGE 0:

FE0 � t

cos
a
2

� � ;

therefore:

la �
t � sin 90ÿ a

2
ÿ y2

� �
cos

a
2

� �
� sin a� y2� �

:

From triangle A 0IE 0 the sine rule gives:
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la

sin 90ÿ a
2
ÿ y2

� � � A0E0

sin 90� a
2

� � :
Therefore:

A0E0 �
la � sin 90� a

2

� �
sin 90ÿ a

2
ÿ y2

� � :
Undeformed area:

Area � l0 ÿ t

tan�y1�
� �

� t� t2

2 � tan�y1� :

Deformed area:

Area A0FI � l2a � sin�a�
2

;

Area A0IE0 �
l2a � sin�y2� � sin 90� a

2

� �
2 � sin 90ÿ a

2
ÿ y2

� � ;

Area FGE0 �
t2 � tan a

2

� �
2

;

Area C0D0H � t2 � tan�C�
2

;

Area GC0HE0 � �lc� � t:
Equate undeformed and deformed areas, substitute for
la and eliminate t, then substitute for lc and eliminate
l0; simplifying gives Eq. (1:

tan�C� � ÿ cot�y1� � 2 tan
a
2

� �
� cot�a� y2�: �1�

This equation can be solved numerically by ®xing
values for y1, y2, and varying a and C.

The minimum turning point of Eq. (1 can be found
by setting:

d�tanC�
da

� 0;

because tan(C) is an increasing function of C in the
range ÿ908< C<908.

Thus:

d 2 tan
a
2

� �� �
da

� ÿ d cot a� y2� �� �
da

:

Using the relationships:

d tan�u�� �
du

� p
90

1

cos2�u�
� �

;

and

d cot�u�� �
du

� ÿ p
90

1

sin2�u�

" #
;

(for u in degrees). Therefore:

cos2
a
2

� �
� sin2�a� y2�; �i�

In equation (i) and for 0R aR(a+ y2)<180, both
cos(a/2) and sin(a+ y2) are positive. Therefore we can
take the square root of both sides:

cos
a
2

� �
� sin�a� y2�: �ii�

Equation (ii) has two solutions depending on whether
(a+ y2)R90 or (a+ y2)>90. If (a+ y2)R90 then
for all a:

cos
a
2

� �
� sin 90ÿ a

2

� �
:

Therefore

sin�a� y2� � sin 90ÿ a
2

� �
:

Because both (a+ y2) and (90ÿ a/2) are less than or
equal to 908 we can equate them:

�a� y2� � 90ÿ a
2

� �
:

Thus the limb dip value for this turning point is:

a1 � 60ÿ 2y2
3
: �1a�

For the second turning point, we have (a+ y2)>90,
therefore:

sin�a� y2� � sin�180ÿ aÿ y2�;
substituting into Eq. (ii) gives:

cos
a
2

� �
� sin 90ÿ a

2

� �
� sin�180ÿ aÿ y2�:

Because the arguments of the sine function are all less
than 908, we can equate them, and the limb dip value
for this turning point is:

a2 � 180ÿ 2y2 ÿ 3a1:

From Fig. 3 we see that for listric faults 0< a<90,
therefore a1 corresponds to the minimum turning
point.

To obtain conditions for zero shear, ®rst refer to
Fig. 2. In order for there to be a zero-shear solution
for a given y1, y2 pair, the minimum turning point of
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the a vs C curve must have a negative C value (curve
types 3 and 4 in Fig. 2). From Eq. (1, in order for C
to be negative in the range 08R aR908 then:

cot�y1� > 2 tan
a
2

� �
� cot�a� y2�: �1b�

Appendix B

B.0.1. Fault-bend fold theory extended: anti-listric faults

Fig. 5(a) illustrates an undeformed, horizontal bed
resting against a segmented anti-listric fault surface.
Fig. 5(b) illustrates the same bed after fault slip such
that the whole of the bed has slipped past the fault
bend.

De®ne angles

GA0H � y2 ÿ a;

outer A0HI � 180� a:

Therefore:

E0HI � A0HE0 � 180� a
2

� �
� 90� a

2
:

Line E 0H must bisect angle A 0HI as a consequence of
the requirement of constant bed thickness (e.g. Suppe,
1985, p. 63, ®gs. 2±24), and de®ning angles in all the
triangles within this angular bend fold gives the equal-
ity: E 0HI=A 0HE 0, and:

E0HF � a
2
;

GE0H � 90ÿ y2 � a
2
;

HE0F � 90ÿ a
2
:

De®ne lengths, assuming conservation of bed length:

BE � CD � t;

AB � t

tan�y1� ;

E0F � t � tan a
2

� �
;

AC � l0;

ED � E0D0 � l0 ÿ t

tan�y1� ;
IC0 � t � tan�C�;

A0H � l0 ÿ t � tan�C� ÿ
 
l0 ÿ t

tan�y1� ÿ t � tan a
2

� �!

� t

"
1

tan�y1� � tan
a
2

� �
ÿ tan�C�

#
;

A0G � t �
 

1

tan�y1� � tan
a
2

� �
ÿ tan�C�

!
� cos�y2 ÿ a�;

HG � A0H � sin�y2 ÿ a� � t � sin�y2 ÿ a�

�
"

1

tan�y1� � tan
a
2

� �
ÿ tan�C�

#
;

A0E0 �
sin 90� a

2

� �
� t �

 
1

tan�y1� � tan
a
2

� �
ÿtan�C�

!

sin 90ÿ y2 � a
2

� � ;

HI � l0 ÿ t

tan�y1� ÿ t � tan a
2

� �
:

Undeformed area:

Area � t l0 ÿ t

tan�y1�
� �

� t2

2 � tan�y1� :

Deformed area:

Area A0HG �

"
t �
�

1

tan�y1� � tan
a
2

� �
ÿ tan�C�

�#
2

� cos�y2 ÿ a�2 � sin�y2 ÿ a�
2

;

Area GHE0 �

"
t �
�

1

tan�y1� � tan
a
2

� �
ÿ tan�C�

�#
� sin�y2 ÿ a�2 � �ADÿAC�

2
;

Area HE0F �
t2 � tan a

2

� �
2

;

Area IC0D0 � t2 � tan�C�
2

;

Area HID0F � t

 
l0 ÿ t

tan�y1� ÿ t � tan a
2

� �!
:
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Equating deformed and undeformed areas, substituting
for l0 and eliminating t; simplifying gives Eq. (2):

cot�y1� � tan�C� ÿ tan
a
2

� �

� cot�y1� � tan
a
2

� �
ÿ tan�C�

� �2

�
sin�y2 ÿ a� � cos a

2

� �
cos y2 ÿ a

2

� �
26664

37775: �2�

This equation can be solved numerically by ®xing
values for y1, y2, and varying a and C.

Appendix C

C.0.1. Steps for hanging wall construction based on
fault shape alone

1. (Fig. 10a and b): Digitize the fault shape. Each
point on the digitized line will be referred to as a
node. Each straight-line section of the fault
(between two nodes) is numbered from top to
base, and has a dip of yn, where n is the fault sec-
tion number (from 1 to N; in our example
N=6).

2. (Fig. 10c): Divide the undeformed hanging wall
into segments by drawing horizontal lines from
each of the fault nodes. Each segment and the
horizon that marks its top will be referred to by
the number of the fault section that bounds it in
the undeformed state.

3. (Fig. 10d): Specify the displacement of the top-
most horizon (horizon 1) along the fault.

4. (Fig. 10e): Determine which fault section the hor-
izon 1 cuto� lies in, let this be F (in our example
F=2).

5. i=1 (segment number).

6. j= F (fault section number).

7. k=1 (horizon number).

8. Initial cuto� angle= y1=yi (dip of fault at the
initial cuto� of horizon i) (in our example,
y1=608).

9. Final resting angle= y2=yj (®nal resting angle
of horizon i) (in our example, y2=508).

10. Determine the minimum deformation a and C
for this pair of y values from Table 1 (in our
example, a=278, C=88).

11. ak=a.

12. (Fig. 10f): Construct the top of segment i with a
dip of a, from the deformed state cuto� point.

13. (Fig. 10f): Increment k by 1.

14. (Fig. 10f): Parallel-project downwards, the geo-
metry of horizon i to the next fault node or the
next horizon cuto�, whichever is next; call this
point k.

15. If fault node is next then:

16. (Fig. 10g): Increment j by 1. (In our example
the point is a fault node).

Else:

17. If cuto� is next then:

18. Increment i by 1.

19. Do (8) to (11) using the new values of i, j, and k
(in our example, y1=608, y2=408).

20. (Fig. 10g): Construct the dip-domain boundary
for the dip change a(kÿ1) to ak (in our example
the forelimb dip changes from 278 to 338).

21. (Fig. 10g): Attach this dip-domain boundary to
the fault at point k.

22. (Fig. 10h): Modify the horizon dips across the
dip-domain boundary to match the dips a(kÿ1)

and ak.

23. Repeat (13) to (23) until the bottom of the hang-
ing wall is reached.

24. (Fig. 10i): Construct form lines parallel to the
layer geometry extending from each of the
points `k'.

25. (Fig. 10i): At a point in the hanging wall where
all form lines are horizontal (or parallel to the
main detachment fault), choose a point in the
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uppermost line and construct the shear pro®le
using the C values obtained from the above al-
gorithm.

Appendix D

D.0.1. Steps to construct shear strain pro®le based on
fault shape and hanging wall geometry

1. Digitize the fault shape. Each point on the digi-
tized line will be referred to as a node. Each
straight-line section of the fault (between two
nodes) is numbered from top to base, and has a
dip of yn, where n is the fault section number
(from 1 to N).

2. Divide the undeformed hanging wall into seg-
ments by drawing horizontal lines from each of
the fault nodes. Each segment and the horizon
that marks its top will be referred to by the num-
ber of the fault section that bounds it in the
undeformed state.

3. Using the deformed shape of the uppermost hor-
izon, parallel-project its geometry downward to
the base of the hanging wall sequence, construct-
ing layer parallel form lines wherever there is a
change in fault dip or a horizon intersects the
fault.

4. Determine which fault section the horizon 1 cut-
o� lies in, let this be F.

5. i=1.

6. j= F.

7. k=1.

8. Measure the dip of the hanging wall at the cuto�
point, this is a.

9. y1=yi.

10. y2=yj.

11. Determine the C value for the a and y values
(Fig. 3).

12. ak=a.

13. Increment k by 1.

14. Move down the fault to the next form line cut-
o�, call this point k.

15. If fault node is next then:

16. Increment j by 1.

17. If cuto� is next then:

18. Increment i by 1.

19. Do (8) to (12).

20. Repeat (13) to (19) until the bottom of the
hanging wall is reached.

21. At a point in the hanging wall where all form
lines are horizontal choose a point in the upper-
most line and construct the shear pro®le using
the C values obtained from the above algor-
ithm.
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